SiC棚板破断面で光沢と艶消しが混在している場合

回の記事で、SiC棚板の破断面で、「光沢状態=降温時の割れ」「艶消し状態=昇温時の割れ」とご説明しました。

下の写真はSiC棚板破断面で光沢と艶消しが混在している珍しいパターンです。

破断面の左と右は艶消しになっていますが、破断面中心付近はSiC粒の光沢が残っています。これは、最初に棚板の端の方からクラックが入り、最後に残った中心部が降温時に割れたという事が見て取れます。尚、ヒートカーブ中の昇温時に棚板の端が割れて艶消しになったのか、それとも降温時にクラック入ったのが、そのまま次また焼成されてヒートカーブの700~1000℃弱を通過し艶消しになったのかはこの写真だけでは判断できません。

 

SiC棚板破断面の光沢具合と割れたタイミング

前回の記事でご説明した通り、ヒートショックでSiC棚板が割れやすい温度帯は約300~900℃くらいです。また、炉内温度が約700~1000℃弱は一番酸化されやすい温度帯です。これらの要素を元にSiC棚板破断面の光沢具合によってヒートカーブ中のどのタイミングで棚板が割れたかをある程度推測する事は可能です。

下の写真は降温時に割れたと思われるSiC棚板です。

破断面は酸化されておらずキラキラしたSiC粒の光沢が残っています(破断面が酸化されると艶消しになります)。即ちヒートカーブにおいて、割れた後に酸化されやすい700~1000℃弱を通過していない為です。

一方下の写真は昇温時に割れた可能性の高いSiC棚板です。破断面が酸化されSiC粒の光沢がほぼ無くなり艶消しになっています。即ちヒートカーブにおいて、割れた後に酸化されやすい700~1000℃弱を通過した為です。

但し、厳密に言うと、降温時の800℃付近で割れると破断面はそれなりに艶消しになり(若干艶消し具合は弱めですが)、また、降温時にクラックが入っても再度炉に投入され酸化されやすい700~1000℃弱を一度通過すると破断面は艶消しになります。

若干判断が難しいケースもありますが、SiC棚板破断面の光沢具合でおおよその割れたタイミングは推測できます。

炉内の棚板・セッターの割れやすい温度帯

SiC棚板やアルミナセッター等の耐火物が炉内で割れる原因のほとんどがヒートショックですが、実は割れやすい温度帯と割れにくい温度帯があります。

下の図はセラミックス焼成のヒートカーブ(焼成曲線)の一例です。

図中の記載の通り約300℃~900℃くらいまでの温度帯で急激な温度変化が耐火物に対して起こると、ヒートショックによる割れが発生しやすいです。一方約900℃から上はSiC棚板でもアルミナセッターでも赤熱してくる温度であり、赤熱状態の高温度帯では多少急激な温度変化が有っても割れにくいです。

以前の記事で記載した通り、炉内温度が上がる時に割れるのを「昇温割れ」、炉内温度が下がる時に割れるのを「降温割れ・冷め割れ」と言いますが、どちらも割れやすい温度帯は同じです。

冷め割れでの棚板の割れが多いという場合は、例えば炉の扉を開けるタイミングを炉内温度が200~300℃未満になってからにすると改善するケースが結構あります。

耐火物の降温割れ(冷め割れ)

前回記事の昇温割れは炉内温度が上がる過程でのヒートショックによるセッター・棚板の割れでしたが、逆に炉内温度が下がる過程でのヒートショックによる割れもあり、降温割れ・冷め割れと言います(どちらかというとこのケースの方が多い感じです)。

下の写真はSiC棚板の降温時のヒートショックによる割れの例です。

縁が先に温度が下がり収縮し出しますが、中心部はまだ温度が上がったままで膨張している為、縁が収縮しようとしても収縮しきれずに、膨張した中心部に向かって裂けてクラックが入った状態です。

このケースの場合はほぼ辺の中心から棚板の中心に向かってクラックが入ります。

棚板の中心部だけに重量物(=蓄熱しやすい物)を載せている場合は、ただでさえ棚板の中心の温度は下がりにくいところに更に積載製品から棚板中心に熱を与え続ける事になり、縁と中心の温度差が大きくなり、降温割れ・冷め割れが起きやすくなります。

耐火物の昇温割れ

耐火物が割れる原因のほとんどはヒートショックです。物体に熱がかかる際は表面や縁から先に温度が上がり、熱が冷める際は逆に表面や縁から先に温度が下がり、一つの物体で温度差ができる事によって膨張・収縮による歪みが生まれ物理的に割れます。

下の写真はアルミナ耐火物セッターの昇温時のヒートショックによる割れの例です。

縁が先に温度が上がり膨張しますが、中心部はまだ温度が上がらず膨張せずにいる為、縁の膨張に中心部が追従できず中心部からクラックが入り、クラックがそこまでで止まった状態です。

セッター・棚板の上の積載製品が密に配置してあったり、上段セッター・棚板と積載製品との空間が狭い場合など、セッター・棚板中心部に熱がかかりにくい場合にこの昇温割れが起こる事があります。

SiC(炭化ケイ素)原料事情

前回の記事で記載した通り、中国共産党の環境政策を発端とする中国の電力不足の為、大量の電気を必要とするSiC製煉は大きく影響を受けております。

SiC製錬所の変電設備
SiC製錬設備の電力端子

例えば中国甘粛省天祝チベット自治区には18社のSiC製煉所がありますが、地方政府は9月18日に内7社に対し操業停止命令、残りの11社にも使用電力の上限を設け、実際にはSiC製煉には全く足りない電力上限の為、結果現在もこの地区は全製錬所が操業停止中です。

その隣の寧夏回族自治区では操業しているSiC製錬所は有りますが、電気料金が0.4元⇒0.6元/Kwhと電力コストが1.5倍に高騰、原料のコークスもUS$500⇒US$1200/t と2倍以上になっています。

SiC製錬風景
SiCインゴット

その為、SiCインゴット価格の相場は今年9月以前の約2倍のレベルで推移しており、インゴットを粉砕・脱鉄・整粒したSiC原料価格は約1.5倍、そのSiC原料から作られるSiC耐火物の価格も大幅に上がってしまい、残念ながらこの流れは簡単に元には戻らない物と思われます。

 

SiC(炭化ケイ素)インゴット価格の高騰

SiC(炭化ケイ素)はそのほとんどが中国で製造されています。このSiCの製煉はアルミニウムの製煉の次に大量に電力を消費します。

現在中国は石炭火力発電が全体の70%近くを占めますが、中国政府がコロナ禍の経済立て直し優先から、急に環境対策に舵を切った為、火力発電所の発電が大幅に抑制され、中国全体で深刻な電力不足に陥っております。

電力を大量に消費するSiC製煉工場の強制的な操業停止や生産抑制で、中国全体で半分以下の生産量になった結果、SiCインゴット価格がそれまでの約2倍に高騰し、結果SiC耐火物の原料となる粉砕・整粒されたSiC原料もかなり値上がりするという情報です。

尚、SiC(炭化ケイ素)インゴットの詳しい製造工程は下記ご参照ください。

炭化ケイ素(SiC)の製造工程/現地SiC製煉工場レポート1

炭化ケイ素(SiC)の製造工程/現地SiC製煉工場レポート2

炭化ケイ素(SiC)の製造工程/現地SiC製煉工場レポート3

炭化ケイ素(SiC)の製造工程/現地SiC製煉工場レポート4

 

Si-SiC製積み上げ式丸支柱

SiCビーム用のSi-SiC製積み上げ式丸支柱です。ムライト質での同形状丸支柱からのグレードアップ版です。

サイズは大小2種類あり、大=高さ140mm、小=高さ70mm でそれぞれの組み合わせも可能です(下の写真は大2個+小1個で組み合わせの関係で高さは320mmになります)。

ムライト製に比べ、肉薄にできるので軽量になり、材質的な比熱も低く、炉の燃費の改善になるのと同時に、ムライト製では長年の使用やハンドリングで角の欠けが発生したりしますが、Si-SiC製の場合ですとそれは各段におきにくくなります。

Si-SiC製積み上げ式小型支柱

SiCビーム用のSi-SiC製積み上げ式小型支柱です。

写真は縦横40x40mmサイズのSi-SiCビームを支えています。

支柱の1段目は高さ75mm、積み上げた2段目は高さ175mmとなります。安定性の観点からは3個積み上げるくらいまでが良いかと思います。

  • 高さが変えられる
  • 小型サイズなので面積を取らない
  • ムライト製支柱に比べ、軽量で比熱も高い為、炉の燃費に貢献する

というのがこのSi-SiC支柱のポイントです。

低温酸化対策品SiC耐火物

非酸化物であるSiC耐火物にとっては、酸化によるSiCの劣化が耐火物の寿命にかかわる一つの大きな要因です。特に炉内温度約700~1000℃弱は一番酸化がきつい温度帯で低温酸化領域と言われており、例えば1300℃での焼成よりも700~1000℃弱での焼成の方がSiC耐火物にとっては過酷な条件となります。

下のバーナースリーブはこの低温酸化に対して強い特別な配合で作られたSiC耐火物です。

表面にきらっとした茶色い色が析出しており、見た目的にはあまりきれいとは言えないのですが、これが低温酸化対策品SiC耐火物です。

製造の焼成工程中の微妙な雰囲気の差によって茶色かったりそうでなかったりの色の差は生まれますが、性能的には均一で同じです。

尚、これを1200℃以上の高温焼成で使用すると、表面の色がべーパーして移ったり、配合成分の一部が溶け出したりしますのであまりお勧めできません。例えば1200℃以上の使用条件の炉床板では別の耐酸化性SiC耐火物もございます。