SiC放熱板

SiC放熱板のご紹介です。SiC放熱板1

上の写真の放熱板サイズは730 x 650mm(反り公差2.5mm以下)です。

酸化物結合SiC(カーボランダム)製の放熱板でプレス成形品ですので、初回に金型作製する必要はございますが、金型を作ってしまえば他のSiC耐火物よりも比較的安価にご提供できます。SiC放熱板2SiCは高耐火度かつ耐薬品性に優れ、又遠赤外線放射も高いですので、様々な用途に使用されます。

Si-SiCロッド

Si-SiC(反応焼結SiC)ロッドのご紹介です。

Si-SiCロッド φ10 x L 100mm
Si-SiCロッド (φ10 x L 100mm)

写真の物は直径φ10mm、長さ100mmのムク材です。Si-SiCは機械的強度が非常に強く、曲げ強度は室温でも1350℃でも250Mpaあります(SiC耐火物の機械的強度と温度の関係はこちらのブログをご参照下さい)。Si-SiCの最高使用温度である1350℃を超えない条件ですと、吊るし焼きの支持棒には最適です。

又、炉の中でステンレス等金属を使うと徐々にやせ細って行ったりしますが、Si-SiCのロッドの場合はやせ細って行くことは無く、又強度の強いSiC耐火物の中でも更に強度のある物となりますので、安心してご使用頂けます。

焼却炉用SiC製耐火レンガ

焼却炉の内張等に使われるSiC製耐火レンガのご紹介です。

SiC並型レンガ
SiC並型レンガ (230x114x65mm)

焼却炉内張に使われるSiC耐火レンガは、セラミック製品の焼成に使われる通常のSiC棚板よりも更に、高温耐酸化性能、高温耐酸・耐アルカリ腐食性能、高温強度が求められます。当社販売のSiC耐火レンガは、SiCが元々持っているこれらの特性を最大限に高めるために専用の特殊配合により作られます。表面にぶつぶつとした物が浮き出ているのもこれらの特性を持たせた特別配合の為です。

又、並型レンガ以外にも燃焼室水管壁等、様々なサイズ・特殊形状の物がございますのでお問合せ下さい。

SiC特殊形状レンガ
SiC特殊形状レンガ

焼却炉内張用SiC製耐火レンガ代表値

  • 化学成分/SiC =約85%  Al2O3=約3%  SiO2=約10%
  • 見掛気孔率 14%
  • カサ比重  2.6

Re-SiC(再結晶SiC)サヤ・匣鉢

再結晶SiCサヤ280x280xH140mm
再結晶SiCサヤ280x280xH140mm

上の写真は再結晶SiC(Re-SiC)のサヤ・匣鉢です。                   サイズは外寸で280x280x高さ140mmで、肉厚は6mm弱です。

再結晶SiCの最高使用温度は1600℃で、SiC耐火物の中では一番高温で使える部類になりますが、再結晶SiCサヤのその他の特徴は

一般的なアルミナ・ムライト・コージライト質サヤに比べ

  • 熱伝導率が格段に良い
  • 熱衝撃(サーマルショック)に対して強く、迅速焼成に対応できる
  • 材質その物に強度があるのでサヤの肉厚を薄くできる
  • 成分はSiC99%なので、シリカ(SiO2)フリーで焼成物との反応が少なく、又粉体の引っ付きも少ないのでメンテナンスが楽
  • ボロ降りが少なくコンタミの心配も少ない

と言った事が揚げられ蛍光体の焼成等に使用されます。

但しSiC耐火物全体に言える事ですが、金属とSiCは反応しますのでフェライト等を直接SiCサヤに入れる使い方はお勧めしませんので、その場合は中に小さなアルミナ質サヤを何個か入れて使われる場合もあるようです。

大幸セラミック・工業用高機能SiC耐火物ページへはこちらから

Si-SiC(反応焼結SiC)バーナースリーブ ・ ラジアントチューブバーナー


Si-SiCバーナースリーブφ120(φ104)xL600mm
Si-SiCバーナースリーブφ120(φ104)xL600mm

上の写真はSi-SiC(反応焼結SiC)バーナースリーブ:サイズ外径φ120mm(内径φ104mm)x長さ600mm です。

Si-SiC(反応焼結SiC)は高強度・高熱伝導率・緻密質による高い耐酸化性能から、高性能バーナースリーブや、ラジアントチューブバーナーの内筒管/外筒管に使われます。

下の写真はSi-SiCラジアントチューブバーナーの内筒管で、サイズは外径φ80mm(内径φ66mm)x長さ1400mm です。


Si-SiCバーナースリーブφ80(φ66)xL1400mm
Si-SiCラジアントチューブバーナー内筒管φ80(φ66)xL1400mm

当社では、他社ではなかなか出来ない大型バーナースリーブも供給可能です。但しSi-SiC(反応焼結SiC)の場合は最高使用温度が1350℃ですのでバーナー部の最高温度をご確認の上お問い合わせ下さい。

大幸セラミック・工業用高機能SiC耐火物ページへはこちらから

窒化物結合SiC(N-SiC)の表面処理被膜

窒化物結合SiC(N-SiC)とはSiCを窒化ケイ素(Si3N4)によって結合させた耐火物で、化学成分としてはSi3N4が約25%、SiCが約65%と言った割合になります。

NSiCビーム
NSiC保護管
N-SiCは上の写真のようなビームや保護管で使われます。一般的には約1200~1450℃の間の温度帯に常に入っている条件での使用では、N-SiC耐火物の性能を一番発揮できるといわれており、1000~1150℃未満くらいですと低温酸化領域での使用となり、SiCが酸化され劣化されやすくなってしまいます。

N-SiC耐火物は鋳込み成形品で、原料は細かいものが使われております。もとの成形品には気孔率がありますが、SiCの耐酸化性能アップの為、通常表面処理をして表面全体をシリカ(SiO2)層で覆い、処理後のN-SiC耐火物その物の気孔率は1%未満となっております。そのため下の写真の様に表面がテカテカしております。


N-SiCビーム表面
N-SiCビーム表面

又、下写真はN-SiC保護管ですが、くびれ部分は後加工をした部分で、この部分には耐酸化被膜はなく気孔率がありますが、その他の部分には被膜があり、テカテカしております。


N-SiC保護管表面
N-SiC保護管表面

窒化物結合SiC(N-SiC)の詳細データはこちらに掲載しております。

再結晶SiC(Re-SiC)の表面状態

再結晶SiC(Re-SiC)はSiC99%の耐火物であり、最高使用温度が1600℃までとSiC耐火物の中では一番高温まで使える部類の物になります。

再結晶SiC板
再結晶SiC板

再結晶SiC耐火物は鋳込み成形で作られますので、プレス成形の酸化物結合SiC耐火物より細かい原料が使用されますが、気孔率が約15%あり、表面は”ヤスリ”のような状態で多少ザラザラしております(下写真)。

再結晶SiC板の表面
再結晶SiC板の表面

 因みに、写真で細かく白い点が見えるのは、SiCが光に反射している為です。太陽光の下などで見るとキラキラしてまぶしいくらいです。

再結晶SiCも、板形状・サヤ形状・中空ビーム形状等製作可能です。再結晶SiC(Re-SiC)の詳細データはこちらに掲載しております。

酸化物結合SiC耐火物の原料粒度と表面状態

セラミック製品の焼成等に一般的に良く使われる一番安価な酸化物結合SiC棚板/耐火物は、他のSiC耐火物(反応焼結SiC、窒化物結合SiC、再結晶SiC)や高温用アルミナセッターと比べ表面状態は少々粗いものとなります。これは酸化物結合SiC耐火物の場合、粒度の異なる何種類かのSiC原料をプレス成形し製造する為で、粗い粒度の原料を入れることによりそれが骨材となり、強度・耐久性が出るのですが、反面どうしても表面に小さな凹部分ができます(下写真)。


酸化物結合SiC板コーティング表面
酸化物結合SiC棚板コーティング表面

表面のコーティングを取った状態は下写真となります。


酸化物結合SiC板表面
酸化物結合SiC棚板表面
金型を作れば多少複雑な形状も製造可能で、下写真の様になります。

酸化物結合SiC耐火物例
酸化物結合SiC耐火物の例

この様な表面状態になるのは、SiC原料の場合アルミナ・ムライト系原料と違いプレス成形時の原料の流動性が良くない為で、表面が少し粗いからと言ってプレス時の締りが悪いという訳ではありません。尚、板形状の場合一般的には厚い物は粗い原料を多くし、薄いものは細かい原料を多くしたりと、その形状・厚みに対し最適な粒度配合で製造されます。

又、通常よりも細かめの粒度で製造した場合表面の凹部は少なくなり比較的滑らかな表面になりまずが、耐火物としての性能は少し劣る物となります(急熱・急冷に対する割れの発生等)。下の写真は細粒構成で作った酸化物結合SiC板を更に表面研磨したもので、多少のピンホールは表面に出ますが、ほぼ鏡面状態になっております。

細粒構成の酸化物結合SiC表面研磨後
細粒構成の酸化物結合SiC板表面研磨後

尚、SiC耐火物は非常に硬く、ダイアモンド工具でないと加工はできませんので、研磨加工費は結構高いものになります。

新形状瓦焼成用SiC耐火物

この度、大幸セラミック独自の新デザイン瓦焼成用SiC棚棒(受台)を開発しました。<意匠登録第1410233号>

大幸セラミック・新形状瓦焼成用SiC棚棒
大幸セラミック・新形状瓦焼成用SiC耐火物

SiC棚棒(受台)に板形状のSiCセッターを差込み突起部で斜めに支え、瓦をそのセッターに立掛け安定させ焼成するという以前からよくある方式の瓦焼成用の酸化物結合SiC製窯道具です。当社の開発した新形状SiC棚棒は、従来の他社製品と比べ約5~10%の軽量化を実現すると同時に、プレス成形品である事から抗折力の有る粒度配合と中までしっかり詰まった低気孔率が寄与し、曲がりに対しても強いものとなっております。

又、他社従来品では立体的な瓦形状や瓦引っ掛け用突出部がSiC棚棒の突起部に接触し製品の瓦が破損するケースがありましたが、当社新形状は瓦の載るスペースが最大限広く設計されており、この問題を解決しました(下写真)。

大幸セラミックSiC棚棒の瓦積載部
大幸セラミックSiC棚棒の瓦積載部

更には差し込まれるSiCセッターのヒートショックによる割れを軽減する為、セッターを支持する突起部形状に当社独自の工夫がされております。

セッターを差し込む棚棒上面の溝とセッターを斜めに支える突起部が連続した傾斜面になっておらず一部空間が空く形でセッターを支える事によりセッター棚棒接触部に熱がこもり難い支持方法にし、セッター根元部とセッター上部の温度差によって起こるセッター根元付近の割れを軽減します(下写真)。

SiC棚棒とSiCセッター間の空間
SiC棚棒とSiCセッター間の空間

又、出来るだけセッターの縁を棚棒突起部が支える事により温度差によるセッター根元付近の割れを軽減します(下写真)。

SiC棚棒突起部のセッター支持位置
SiC棚棒突起部のセッター支持位置

この温度差(ヒートショック)によるセッター根元の割れに関する詳しい説明はこちらのブログをご覧下さい。

この様に大幸セラミック新形状SiC棚棒はセッター側の寿命も延ばすべく独自の形状となっております。また当社の場合、棚棒とセッター・製品の引っ付き防止の為上面吹き付けコーティング加工も追加費用無しで対応しております。

瓦焼成用SiCセッターの割れの原因とその対策

瓦焼成風景
瓦焼成風景

瓦の焼成は、板形状のSiCセッターをSiC棚棒に差込みそのセッターに立掛けて焼成しますが、そのSiCセッターが割れる箇所は棚棒と接する根元部分が多いです(下写真)。

SiCセッターの割れ方
SiCセッターの割れ方

これは荷重で割れると言うよりもヒートショック(熱衝撃)によって割れる原因が大きいと考えられます(上の写真の通りセッターの傾きは20度くらいですのでセッターにさほど荷重はかかりません)。

最高温度約1140℃、焼成時間10時間強と言った条件で瓦は焼成されますが、温度が下がっていく過程で体積の大きい中実材のSiC棚棒はなかなか温度が下がらず、厚み8mmの薄い板形状SiCセッターはそれよりも温度が早く下がろうとします。その場合、棚棒と接しているセッター根元部分は棚棒からの熱を受け根元部だけなかなか温度が下がらず、結果棚棒と接していないセッターのそれより上の部分と温度差ができ、収縮率の違いで歪ができ、セッターにクラックが入るという原理です。

SiC棚棒とSiCセッター割れ
SiC棚棒とSiCセッター割れ

その対策として、当社新形状SiC棚棒は、セッターを差し込む棚棒上面の溝とセッターを斜めに支える突起部が連続した傾斜面になっておらず一部空間が空く形でセッターを支える事によりセッターと棚棒の接触部分に熱がこもり難くし、セッターが棚棒から受ける熱を軽減しています。

SiC棚棒とSicセッターの空間
大幸セラミック新形状SiC棚棒とSicセッターの空間

又、板形状は温度が下がる時、縁部分から下がってゆきますので、元々板の縁と中心では温度差が必ず発生しますが、中心近くで物が接しているとその部分の温度の下がりが更に遅くなり、即ち更に縁と中心の温度差が大きくなり割れやすくなります。

その対策として、当社新形状SiC棚棒は突起部がセッターを支える箇所も出来るだけセッターの縁で支える様にし、棚棒と接するセッター根元部とセッター上部の温度差(ヒートショック)を軽減し、セッター根元付近の割れを防ぎし、セッター側の寿命を延ばす試みがなされております。

SiCセッター支持部分
大幸セラミックSiC棚棒のSiCセッター支持部分